Hints will display for most wrong answers; explanations for most right answers. You can attempt a question multiple times; it will only be scored correct if you get it right the first time. To see five new questions, reload the page.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test. Some of the sample questions were more convoluted than I could bear to write. See terms of use. See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

## MTEL General Curriculum Mathematics Practice

Question 1 |

#### The window glass below has the shape of a semi-circle on top of a square, where the side of the square has length x. It was cut from one piece of glass.

#### What is the perimeter of the window glass?

\( \large 3x+\dfrac{\pi x}{2}\) Hint: By definition, \(\pi\) is the ratio of the circumference of a circle to its diameter; thus the circumference is \(\pi d\). Since we have a semi-circle, its perimeter is \( \dfrac{1}{2} \pi x\). Only 3 sides of the square contribute to the perimeter. | |

\( \large 3x+2\pi x\) Hint: Make sure you know how to find the circumference of a circle. | |

\( \large 3x+\pi x\) Hint: Remember it's a semi-circle, not a circle. | |

\( \large 4x+2\pi x\) Hint: Only 3 sides of the square contribute to the perimeter. |

Question 2 |

#### The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

\( \large2\cdot 5\cdot 7\) Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. | |

\( \large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7\) Hint: 1260 is not divisible by 8, so it isn't a multiple of this N. | |

\( \large3 \cdot 5 \cdot 7\) Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. | |

\( \large{{3}^{2}}\cdot 5\cdot 7\) Hint: \(1260=2^2 \cdot 3^2 \cdot 5 \cdot 7\) and \(60=2^2 \cdot 3 \cdot 5\). In order for 1260 to be the LCM, N has to be a multiple of \(3^2\) and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b). |

Question 3 |

#### The polygon depicted below is drawn on dot paper, with the dots spaced 1 unit apart. What is the perimeter of the polygon?

\( \large 18+\sqrt{2} \text{ units}\) Hint: Be careful with the Pythagorean Theorem. | |

\( \large 18+2\sqrt{2}\text{ units}\) Hint: There are 13 horizontal or vertical 1 unit segments. The longer diagonal is the hypotenuse of a 3-4-5 right triangle, so its length is 5 units. The shorter diagonal is the hypotenuse of a 45-45-90 right triangle with side 2, so its hypotenuse has length \(2 \sqrt{2}\). | |

\( \large 18 \text{ units}
\) Hint: Use the Pythagorean Theorem to find the lengths of the diagonal segments. | |

\( \large 20 \text{ units}\) Hint: Use the Pythagorean Theorem to find the lengths of the diagonal segments. |

Question 4 |

#### Use the graph below to answer the question that follows:

#### The graph above represents the equation \( \large 3x+Ay=B\), where A and B are integers. What are the values of A and B?

\( \large A = -2, B= 6\) Hint: Plug in (2,0) to get B=6, then plug in (0,-3) to get A=-2. | |

\( \large A = 2, B = 6\) Hint: Try plugging (0,-3) into this equation. | |

\( \large A = -1.5, B=-3\) Hint: The problem said that A and B were integers and -1.5 is not an integer. Don't try to use slope-intercept form. | |

\( \large A = 2, B = -3\) Hint: Try plugging (2,0) into this equation. |

Question 5 |

## AHint: \(\frac{34}{135} \approx \frac{1}{4}\) and \( \frac{53}{86} \approx \frac {2}{3}\). \(\frac {1}{4}\) of \(\frac {2}{3}\) is small and closest to A. | |

## BHint: Estimate with simpler fractions. | |

## CHint: Estimate with simpler fractions. | |

## DHint: Estimate with simpler fractions. |

If you found a mistake or have comments on a particular question, please contact me (please copy and paste at least part of the question into the form, as the numbers change depending on how quizzes are displayed). General comments can be left here.