Hints will display for most wrong answers; explanations for most right answers.   You can attempt a question multiple times; it will only be scored correct if you get it right the first time.

I used the official objectives and sample test to construct these questions, but cannot promise that they accurately reflect what’s on the real test.   Some of the sample questions were more convoluted than I could bear to write.   See terms of use.   See the MTEL Practice Test main page to view questions on a particular topic or to download paper practice tests.

MTEL General Curriculum Mathematics Practice

 Question 1

The column below consists of two cubes and a cylinder.  The cylinder has diameter y, which is also the length of the sides of each cube.   The total height of the column is 5y.  Which of the formulas below gives the volume of the column?

 A $$\large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{4}$$Hint: The cubes each have volume $$y^3$$. The cylinder has radius $$\dfrac{y}{2}$$ and height $$3y$$. The volume of a cylinder is $$\pi r^2 h=\pi ({\dfrac{y}{2}})^2(3y)=\dfrac{3\pi {{y}^{3}}}{4}$$. Note that the volume of a cylinder is analogous to that of a prism -- area of the base times height. B $$\large 2{{y}^{3}}+3\pi {{y}^{3}}$$Hint: y is the diameter of the circle, not the radius. C $$\large {{y}^{3}}+5\pi {{y}^{3}}$$Hint: Don't forget to count both cubes. D $$\large 2{{y}^{3}}+\dfrac{3\pi {{y}^{3}}}{8}$$Hint: Make sure you know how to find the volume of a cylinder.
Question 1 Explanation:
Topic: Derive and use formulas for calculating the lengths, perimeters, areas, volumes, and surface areas of geometric shapes and figures (Objective 0023).
 Question 2

4 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?

2 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper, and fold where you think the lines of reflective symmetry are (or put a mirror there). Do things line up as you thought they would?

0 lines of reflective symmetry, 1 center of rotational symmetry.

Hint:
The intersection of the diagonals is a center of rotational symmetry. There are no lines of reflective symmetry, although many people get confused about this fact (best to play with hands on examples to get a feel). Just fyi, the letter S also has rotational, but not reflective symmetry, and it's one that kids often write backwards.

2 lines of reflective symmetry, 0 centers of rotational symmetry.

Hint:
Try cutting out a shape like this one from paper. Trace onto another sheet of paper. See if there's a way to rotate the cut out shape (less than a complete turn) so that it fits within the outlines again.
Question 2 Explanation:
Topic: Analyze geometric transformations (e.g., translations, rotations, reflections, dilations); relate them to concepts of symmetry (Objective 0024).
 Question 3

Which of the lists below is in order from least to greatest value?

 A $$\large \dfrac{1}{2},\quad \dfrac{1}{3},\quad \dfrac{1}{4},\quad \dfrac{1}{5}$$Hint: This is ordered from greatest to least. B $$\large \dfrac{1}{3},\quad \dfrac{2}{7},\quad \dfrac{3}{8},\quad \dfrac{4}{11}$$Hint: 1/3 = 2/6 is bigger than 2/7. C $$\large \dfrac{1}{4},\quad \dfrac{2}{5},\quad \dfrac{2}{3},\quad \dfrac{4}{5}$$Hint: One way to look at this: 1/4 and 2/5 are both less than 1/2, and 2/3 and 4/5 are both greater than 1/2. 1/4 is 25% and 2/5 is 40%, so 2/5 is greater. The distance from 2/3 to 1 is 1/3 and from 4/5 to 1 is 1/5, and 1/5 is less than 1/3, so 4/5 is bigger. D $$\large \dfrac{7}{8},\quad \dfrac{6}{7},\quad \dfrac{5}{6},\quad \dfrac{4}{5}$$Hint: This is in order from greatest to least.
Question 3 Explanation:
Topic: Ordering Fractions (Objective 0017)
 Question 4

How many students at the college are seniors who are not vegetarians?

 A $$\large 137$$Hint: Doesn't include the senior athletes who are not vegetarians. B $$\large 167$$ C $$\large 197$$Hint: That's all seniors, including vegetarians. D $$\large 279$$Hint: Includes all athletes who are not vegetarians, some of whom are not seniors.
Question 4 Explanation:
Topic: Venn Diagrams (Objective 0025)
 Question 5

$$7-4=3$$ and $$8-5=3$$, so the fractions are equal.

Hint:
Not how to compare fractions. By this logic, 1/2 and 3/4 are equal, but 1/2 and 2/4 are not.

$$4\times 8=32$$ and $$7\times 5=35$$. Since $$32<35$$ , $$\dfrac{5}{8}<\dfrac{4}{7}$$

Hint:
Starts out as something that works, but the conclusion is wrong. 4/7 = 32/56 and 5/8 = 35/56. The cross multiplication gives the numerators, and 35/56 is bigger.

$$4<5$$ and $$7<8$$, so $$\dfrac{4}{7}<\dfrac{5}{8}$$

Hint:
Conclusion is correct, logic is wrong. With this reasoning, 1/2 would be less than 2/100,000.
Question 5 Explanation:
Topics: Comparing fractions, and understanding the meaning of fractions (Objective 0017).
 Question 6

Each number in the table above represents a value W that is determined by the values of x and y.  For example, when x=3 and y=1, W=5.  What is the value of W when x=9 and y=14?  Assume that the patterns in the table continue as shown.

 A $$\large W=-5$$Hint: When y is even, W is even. B $$\large W=4$$Hint: Note that when x increases by 1, W increases by 2, and when y increases by 1, W decreases by 1. At x=y=0, W=0, so at x=9, y=14, W has increased by $$9 \times 2$$ and decreased by 14, or W=18-14=4. C $$\large W=6$$Hint: Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0. D $$\large W=32$$Hint: Try fixing x or y at 0, and start by finding W for x=0 y=14 or x=9, y=0.
Question 6 Explanation:
Topic: Recognize and extend patterns using a variety of representations (e.g., verbal, numeric, pictorial, algebraic) (Objective 0021)
 Question 7

Which of the following is equal to eleven billion four hundred thousand?

 A $$\large 11,400,000$$Hint: That's eleven million four hundred thousand. B $$\large11,000,400,000$$ C $$\large11,000,000,400,000$$Hint: That's eleven trillion four hundred thousand (although with British conventions; this answer is correct, but in the US, it isn't). D $$\large 11,400,000,000$$Hint: That's eleven billion four hundred million
Question 7 Explanation:
Topic: Place Value (Objective 0016)
 Question 8

The commutative property is used incorrectly.

Hint:
The commutative property is $$a+b=b+a$$ or $$ab=ba$$.

The associative property is used incorrectly.

Hint:
The associative property is $$a+(b+c)=(a+b)+c$$ or $$a \times (b \times c)=(a \times b) \times c$$.

The distributive property is used incorrectly.

Hint:
$$(x+3)(x+3)=x(x+3)+3(x+3)$$=$$x^2+3x+3x+9.$$
Question 8 Explanation:
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
 Question 9

It is too high by a factor of 100

Question 9 Explanation:
Topics: Estimation, Scientific Notation in the real world (Objective 0016).
 Question 10

Which of the lists below is in order from least to greatest value?

 A $$\large -0.044,\quad -0.04,\quad 0.04,\quad 0.044$$Hint: These are easier to compare if you add trailing zeroes (this is finding a common denominator) -- all in thousandths, -0.044, -0.040,0 .040, 0.044. The middle two numbers, -0.040 and 0.040 can be modeled as owing 4 cents and having 4 cents. The outer two numbers are owing or having a bit more. B $$\large -0.04,\quad -0.044,\quad 0.044,\quad 0.04$$Hint: 0.04=0.040, which is less than 0.044. C $$\large -0.04,\quad -0.044,\quad 0.04,\quad 0.044$$Hint: -0.04=-0.040, which is greater than $$-0.044$$. D $$\large -0.044,\quad -0.04,\quad 0.044,\quad 0.04$$Hint: 0.04=0.040, which is less than 0.044.
Question 10 Explanation:
Topic: Ordering decimals and integers (Objective 0017).
 Question 11

40

Hint:
"Keychain" appears on the spinner twice.

80

Hint:
The probability of getting a keychain is 1/3, and so about 1/3 of the time the spinner will win.

100

Hint:
What is the probability of winning a keychain?

120

Hint:
That would be the answer for getting any prize, not a keychain specifically.
Question 11 Explanation:
Topic: I would call this topic expected value, which is not listed on the objectives. This question is very similar to one on the sample test. It's not a good question in that it's oversimplified (a more difficult and interesting question would be something like, "The school bought 100 keychains for prizes, what is the probability that they will run out before 240 people play?"). In any case, I believe the objective this is meant for is, "Recognize the difference between experimentally and theoretically determined probabilities in real-world situations. (Objective 0026)." This is not something easily assessed with multiple choice .
 Question 12

Store A

Hint:
This would save about \$2.50. You can quickly see that D saves more.

Store B

Hint:
This saves 15% and C saves 25%.

Store D

Hint:
This is about 20% off, which is less of a discount than C.
Question 14 Explanation:
Topic: Understand the meanings and models of integers, fractions, decimals,percents, and mixed numbers and apply them to the solution of word problems (Objective 0017).
 Question 15

What is the perimeter of a right triangle with legs of lengths x and 2x?

 A $$\large 6x$$Hint: Use the Pythagorean Theorem. B $$\large 3x+5{{x}^{2}}$$Hint: Don't forget to take square roots when you use the Pythagorean Theorem. C $$\large 3x+\sqrt{5}{{x}^{2}}$$Hint: $$\sqrt {5 x^2}$$ is not $$\sqrt {5}x^2$$. D $$\large 3x+\sqrt{5}{{x}^{{}}}$$Hint: To find the hypotenuse, h, use the Pythagorean Theorem: $$x^2+(2x)^2=h^2.$$ $$5x^2=h^2,h=\sqrt{5}x$$. The perimeter is this plus x plus 2x.
Question 15 Explanation:
Topic: Recognize and apply connections between algebra and geometry (e.g., the use of coordinate systems, the Pythagorean theorem) (Objective 0024).
 Question 16

There are six gumballs in a bag — two red and four green.  Six children take turns picking a gumball out of the bag without looking.   They do not return any gumballs to the bag.  What is the probability that the first two children to pick from the bag pick the red gumballs?

 A $$\large \dfrac{1}{3}$$Hint: This is the probability that the first child picks a red gumball, but not that the first two children pick red gumballs. B $$\large \dfrac{1}{8}$$Hint: Are you adding things that you should be multiplying? C $$\large \dfrac{1}{9}$$Hint: This would be the probability if the gumballs were returned to the bag. D $$\large \dfrac{1}{15}$$Hint: The probability that the first child picks red is 2/6 = 1/3. Then there are 5 gumballs in the bag, one red, so the probability that the second child picks red is 1/5. Thus 1/5 of the time, after the first child picks red, the second does too, so the probability is 1/5 x 1/3 = 1/15.
Question 16 Explanation:
Topic: Calculate the probabilities of simple and compound events and of independent and dependent events (Objective 0026).
 Question 17

The student‘s solution is correct.

Hint:
Try plugging into the original solution.

The student did not correctly use properties of equality.

Hint:
After $$x=-2x+10$$, the student subtracted 2x on the left and added 2x on the right.

The student did not correctly use the distributive property.

Hint:
Distributive property is $$a(b+c)=ab+ac$$.

The student did not correctly use the commutative property.

Hint:
Commutative property is $$a+b=b+a$$ or $$ab=ba$$.
Question 17 Explanation:
Topic: Justify algebraic manipulations by application of the properties of equality, the order of operations, the number properties, and the order properties (Objective 0020).
 Question 18

100

Hint:
6124/977 is approximately 6.

200

Hint:
6124/977 is approximately 6.

1,000

Hint:
6124/977 is approximately 6. 155 is approximately 150, and $$6 \times 150 = 3 \times 300 = 900$$, so this answer is closest.

2,000

Hint:
6124/977 is approximately 6.
Question 18 Explanation:
Topics: Estimation, simplifying fractions (Objective 0016).
 Question 19

A car is traveling at 60 miles per hour.  Which of the expressions below could be used to compute how many feet the car travels in 1 second?  Note that 1 mile = 5,280 feet.

 A $$\large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot 60\dfrac{\text{seconds}}{\text{minute}}$$Hint: This answer is not in feet/second. B $$\large 60\dfrac{\text{miles}}{\text{hour}}\cdot 5280\dfrac{\text{feet}}{\text{mile}}\cdot \dfrac{1}{60}\dfrac{\text{hour}}{\text{minutes}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}$$Hint: This is the only choice where the answer is in feet per second and the unit conversions are correct. C $$\large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{foot}}{\text{miles}}\cdot 60\dfrac{\text{hours}}{\text{minute}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}$$Hint: Are there really 60 hours in a minute? D $$\large 60\dfrac{\text{miles}}{\text{hour}}\cdot \dfrac{1}{5280}\dfrac{\text{mile}}{\text{feet}}\cdot 60\dfrac{\text{minutes}}{\text{hour}}\cdot \dfrac{1}{60}\dfrac{\text{minute}}{\text{seconds}}$$Hint: This answer is not in feet/second.
Question 19 Explanation:
Topic: Use unit conversions and dimensional analysis to solve measurement problems (Objective 0023).
 Question 20

The least common multiple of 60 and N is 1260. Which of the following could be the prime factorization of N?

 A $$\large2\cdot 5\cdot 7$$Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. B $$\large{{2}^{3}}\cdot {{3}^{2}}\cdot 5 \cdot 7$$Hint: 1260 is not divisible by 8, so it isn't a multiple of this N. C $$\large3 \cdot 5 \cdot 7$$Hint: 1260 is divisible by 9 and 60 is not, so N must be divisible by 9 for 1260 to be the LCM. D $$\large{{3}^{2}}\cdot 5\cdot 7$$Hint: $$1260=2^2 \cdot 3^2 \cdot 5 \cdot 7$$ and $$60=2^2 \cdot 3 \cdot 5$$. In order for 1260 to be the LCM, N has to be a multiple of $$3^2$$ and of 7 (because 60 is not a multiple of either of these). N also cannot introduce a factor that would require the LCM to be larger (as in choice b).
Question 20 Explanation:
Topic: Least Common Multiple (Objective 0018)
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 20 questions to complete.
 ← List →